Liapunov exponents and mode-locked solutions for integrate-and-fire dynamical systems

نویسنده

  • S Coombes
چکیده

We discuss the notion of Liapunov exponent for integrate-and-fire (IF) type dynamical systems. In contrast to smooth flows there is a contribution to the IF Liapunov exponent arising from the discontinuous nature of the firing mechanism. Introducing the notion of an IF mode-locked state we are able to show that linear stability is consistent with the requirement of a negative IF Liapunov exponent. We apply our results to IF systems that may be used to study the entrainment of biological oscillators.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mode locking in a periodically forced resonate-and-fire neuron model.

The resonate-and-fire (RF) model is a spiking neuron model which from a dynamical systems perspective is a piecewise smooth system (impact oscillator). We analyze the response of the RF neuron oscillator to periodic stimuli by expressing the firing events in terms of an implicit one-dimensional time map. Based on such a firing map, we describe mode-locked solutions and their stability, leading ...

متن کامل

Dynamical behavior and synchronization of chaotic chemical reactors model

In this paper, we discuss the dynamical properties of a chemical reactor model including Lyapunov exponents, bifurcation, stability of equilibrium and chaotic attractors as well as necessary conditions for this system to generate chaos. We study the synchronization of chemical reactors model via sliding mode control scheme. The stability of proposed method is proved by Barbalate’s lemma. Numeri...

متن کامل

Mode locking and Arnold tongues in integrate-and-fire neural oscillators.

An analysis of mode-locked solutions that may arise in periodically forced integrate-and-fire (IF) neural oscillators is introduced based upon a firing map formulation of the dynamics. A q:p mode-locked solution is identified with a spike train in which p firing events occur in a period qDelta, where Delta is the forcing period. A linear stability analysis of the map of firing times around such...

متن کامل

Chaotic firing in the sinusoidally forced leaky integrate-and-fire model with threshold fatigue

The leaky integrate-and-fire (LIF) model is one of the elementary neuronal models that has been widely used to gain understanding of the behavior of many excitable systems. The sinusoidally forced standard leaky integrate-and-fire model reproduces the quasiperiodic and phase locked discharge trains observed experimentally in neurons. However, this basic model fails to generate chaotic firing, w...

متن کامل

Periodically forced piecewise-Linear Adaptive exponential Integrate-and-Fire Neuron

Although variability is a ubiquitous characteristic of the nervous system, under appropriate conditions neurons can generate precisely timed action potentials. Thus considerable attention has been given to the study of a neuron’s output in relation to its stimulus. In this study, we consider an increasingly popular spiking neuron model, the adaptive exponential integrateand-fire neuron. For ana...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999